Research in Abnormal Psychology

Chapter 2

• Research is the systematic search for facts through the use of careful observations and investigations
 – It is the key to accuracy in all fields but it is particularly important in the field of abnormal psychology
 • Theories and treatments that seem reasonable and effective in individual instances may prove disastrous when widely applied
 • Only by fully testing a theory or technique on representative groups of individuals can clinicians evaluate the accuracy, effectiveness, and safety of their ideas and techniques

• Clinical researchers face certain challenges that make their work very difficult:
 – Measuring unconscious motives
 – Assessing private thoughts
 – Monitoring mood changes
 – Calculating human potential
• Clinical researchers must consider different cultural backgrounds, races, and genders of the people they study
• They must always ensure that the rights of their research participants, both human and animal, are not violated
What Do Clinical Researchers Do?

- Clinical researchers try to discover universal laws, or principles, of abnormal psychological functioning:
 - Search for nomothetic understanding
 - General or universal laws or truths
 - Do not typically assess, diagnose, or treat individual clients
 - Rely on the scientific method to pinpoint relationships between variables
 - Use three methods of investigation to form and test hypotheses and to draw broad conclusions...

The Case Study

- Provides a detailed, interpretative description of a person's life and psychological problems
- Can be a source of new ideas about behavior
 - Freud's theories based mainly on case studies
- May offer tentative support for a theory
- May challenge a theory's assumptions
- May inspire new therapeutic techniques
- May offer opportunities to study unusual problems

The Case Study

- Has limitations:
 - Is reported by biased observers
 - Relies on subjective evidence
 - Has low internal validity
 - Provides little basis for generalization
 - Has low external validity
- These limitations are addressed by the two other methods of investigation...
The Correlational Method and The Experimental Method

- Do not offer richness of detail
- Do allow researchers to draw broad conclusions
- Preferred method of clinical investigation
 - Typically involve observing many individuals
 - Researchers apply procedures uniformly
 - Studies can be replicated
 - Researchers use statistical tests to analyze results

The Correlational Method

- Correlation is the degree to which events or characteristics vary with each other
 - The correlational method is a research procedure used to determine the “co-relationship” between variables
- The people chosen for a study are its subjects or participants, collectively called a sample
 - The sample must be representative of the larger population

Describing a Correlation

- Correlational data can be graphed and a “line of best fit” can be drawn
 - Positive correlation (slope is upward and to the right) = variables change in the same direction
 - Negative correlation (downward slope) = variables change in the opposite direction
 - Unrelated (no slope) = no consistent relationship
Positive Correlation

Negative Correlation

No Correlation
Describing a Correlation

- The magnitude (strength) of a correlation is also important
 - High magnitude = variables which vary closely together; fall close to the line of best fit
 - Low magnitude = variables which do not vary as closely together; loosely scattered around the line of best fit

Magnitude of Correlation

Describing a Correlation

- Direction and magnitude of a correlation are often calculated numerically
 - This statistic is the “correlation coefficient,” symbolized by the letter “r”
 - The correlation coefficient can vary from +1.00 (perfect positive correlation) to -1.00 (perfect negative correlation)
 - Sign (+ or -) indicates direction
 - Number indicates magnitude
 - 0.00 = no consistent relationship
 - Most correlations found in psychological research fall far short of “perfect”
When Can Correlations Be Trusted?

- Correlations can be trusted based on a statistical analysis of probability
 - "Statistical significance" means that the finding is unlikely to have occurred by chance
 - By convention, if there is less than a 5% probability that findings are due to chance (p < .05), results are considered "statistically significant" and are thought to reflect the larger population
 - Generally, confidence increases with the size of the sample and the magnitude of the correlation

What Are the Merits of the Correlational Method?

- Advantages of the correlational method:
 - Has high external validity
 - Can generalize findings
 - Can repeat (replicate) studies on other samples

- Difficulties with correlational studies:
 - Lack internal validity
 - Results describe but do not explain a relationship
 - Results say nothing about causation

<table>
<thead>
<tr>
<th>Relative Strengths and Weaknesses of Research Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case study</td>
</tr>
<tr>
<td>Correlated method</td>
</tr>
<tr>
<td>Experimental method</td>
</tr>
</tbody>
</table>
Special Forms of Correlational Research

• There are two special forms of correlational study:
 – Epidemiological studies
 • Reveal the incidence and prevalence of a disorder in a particular population
 – Incidence = number of new cases that emerge in a given period
 – Prevalence = total number of cases in a given period
 – Longitudinal studies
 • Researchers observe the same individuals on many occasions over a long period

The Experimental Method

• An experiment is a research procedure in which a variable is manipulated and the manipulation’s effect on another variable is observed
 – Manipulated variable = independent variable
 – Variable being observed = dependent variable
• Allows researchers to ask questions such as: Does a particular therapy relieve the symptoms of a particular disorder?
 – Questions about causal relationships can only be answered by an experiment

The Experimental Method

• Statistics and research design are very important
 – Researchers must try to eliminate all confounds – variables other than the independent variable that may also be affecting the dependent variable
 – Three features are included in experiments to guard against confounds:
 • A control group
 • Random assignment
 • Blind design
The Control Group

- A control group is a group of research participants who are not exposed to the independent variable, but whose experience is similar to that of the experimental group
 - By comparing the two groups, researchers can better determine the effect of the independent variable
- Rules of statistical significance are applied
 - In addition, clinicians may also evaluate clinical significance

Random Assignment

- Researchers must also watch out for differences in the makeup of the experimental and control groups
 - To do so, researchers use random assignment – any selection procedure that ensures that every participant in the experiment is as likely to be placed in one group as another
 - Examples: coin flip; picking names out of a hat

Blind Design

- A final confound problem is bias
 - To avoid bias by the participant, experimenters employ a “blind design,” in which participants are kept from knowing which assigned group (experimental or control) they are in
 - One strategy for this is providing a placebo – something that simulates real therapy but has none of its key ingredients
 - To avoid bias by the experimenter, experimenters employ a “double-blind design,” in which the experimenters and the participants are kept from knowing which condition of the study participants are in
 - Often used in medication trials
Alternative Experimental Designs

- It is not easy to devise an experiment that is both well controlled and enlightening
- Clinical researchers often must settle for designs that are less than ideal and include:
 - Quasi-experimental designs
 - Natural experiments
 - Analogue experiments
 - Single-subject experiments

Alternative Experimental Designs

- In quasi-experimental, or mixed, designs, investigators do not randomly assign participants to groups, but make use of groups that already exist
 - Example: Children with a history of child abuse
- To address the problem of confounds, researchers use matched control groups
 - These groups are “matched” to the experimental group based on demographic and other variables

Alternative Experimental Designs

- In natural experiments, nature manipulates the independent variable and the experimenter observes the effects
 - Example: Psychological impact of flooding
- These events cannot be replicated at will
- Broad generalizations cannot be made
Alternative Experimental Designs

- Analogue experiments allow investigators to freely manipulate independent variables while avoiding ethical and practical limitations
 - They induce laboratory subjects to behave in ways that seem to resemble real life
 - Example: Animal subjects
 - The major limitation of all analogue research is that experimenters can never be certain that the phenomena observed in the lab are the same as the psychological disorders being investigated

- In a single-subject experiment, a single participant is observed both before and after manipulation of an independent variable
 - Experiments rely on baseline data to set a standard for comparison
 - An example is the ABAB, or reversal, design

- In an ABAB (reversal) design, a participant’s reactions are measured during a baseline period (A), after the introduction of the independent variable (B), after the removal of the independent variable (A), and after reintroduction of the independent variable (B)
 - The participant is, essentially, compared against himself or herself under different conditions rather than against control subjects
Alternative Experimental Designs

• Single-subject experiments are similar to individual case studies
 — Both focus on one subject only
 — Both have low external validity
• However, the single-subject experiment has higher internal validity than the case study, given the manipulation of an independent variable